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Abstract

In a previous paper, Antunes, Axisa, and co-workers, developed a linearized model for the dynamic of rotors under

moderate fluid confinement, based on classical perturbation analysis, covering two different cases: (i) dissipative

motions of a centered rotor; (ii) motions of an eccentric rotor for frictionless flow. Following the same procedures and

assumptions, we derive here an improved model for the more general case of dissipative linearized motions of an eccentric

rotor. Besides the rotor motion variables, a new variable—which can be interpreted as the fluctuating term of the

average tangential velocity—is introduced, yielding an additional eigenvalue in the linear analysis. The new variable

introduced, which is coupled with the rotor motions, is very convenient when frictional effects are not neglected. Under

dissipative flows, a richer modal behavior is highlighted, which can be related to delay effects of the flow responses to

the rotor motions. Our approach can be applied as well to other flow-excited systems, for example, those subjected to

axial or leakage flows. Because rotor-dynamics are strongly dependent on the mean rotor eccentricity, the adequacy of

this (or any other) model rely on using the actual value for such parameter.

r 2003 Published by Elsevier Science Ltd.

1. Introduction

In a previous paper, Antunes et al. (1996), developed a linearized model for the dynamic of rotors under moderate

fluid confinement, based on classical perturbation analysis. These authors presented exact analytical results covering

two different cases:

1. dissipative linearized motions of a centered rotor;

2. linearized motions of an eccentric rotor for frictionless flows.

Their work showed, in particular, that rotor dynamics are quite sensitive to eccentricity and dissipative effects.

Indeed, for moderate or high values of the rotor eccentricity, the system became linearly unstable by divergence—at

spinning velocities much lower than those for which concentric rotors flutter. Quantitative differences in the stability

boundaries are mostly controlled by the friction-dependent flow terms.
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Following the same procedures and assumptions of Antunes et al. (1996), we derive here an improved model to cover

the more general case of a dissipative linearized motion of an eccentric rotor, for which an exact theoretical analysis

presents some further difficulties because the flow-coupling matrices now depend on the motion frequency.

In this general case, which was only previously covered in a coarse manner, the coupling between an auxiliary flow

variable and the rotor motions is introduced, yielding an additional eigenvalue in the linear analysis. Numerical results

for the modal behavior of the flow-coupled system are then obtained in a straightforward manner, as iterative

computations can be avoided.

Under dissipative flows, computations using the present model uncover intricacies in the system modal behavior,

which are not displayed by the conservative case.

2. Flow formulation

Consider the geometry of the fluid annulus represented in Fig. 1, where y and t are, respectively, the azimuth and

time, R is the shaft radius and uðy; tÞ is the gap-averaged tangential flow velocity. The annular gap depth hðy; tÞ is very
well approximated by

hðy; tÞ ¼ H � ðX0 þ X ðtÞÞ cos y� Y ðtÞ sin y; ð1Þ

where H is the average annular gap and X0 is some initial static eccentricity. Note that one can always choose an

adequate orientation of coordinate axis to express the initial static eccentricity by X0:
As in Antunes et al. (1996) the following simplifying assumptions will be adopted concerning the flow field:

1. the flow is modelled as being two-dimensional and incompressible;

2. the radial gradients in the velocity and pressure fields are neglected;

3. the dissipative effects due to turbulent shear stresses at the walls are modelled using semiempirical loss-of-head

terms.

Given the above assumptions one can obtain the continuity equation for incompressible flow and the momentum

equation (projected in the tangential direction),
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where r is the fluid density and pðy; tÞ is the gap-averaged pressure.
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Fig. 1. Geometry of the fluid annulus.
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The shear stresses at the rotor and stator walls, in Eq. (3), are given by

tsðy; tÞ ¼ 1
2
rujujfs;

trðy; tÞ ¼ �1
2
rðOR � uÞjOR � ujfr; ð4Þ

where fr and fs are empirical friction coefficients, which depend on the flow Reynolds number and on wall

roughness.

Assuming fr ¼ fs ¼ f ; for the sake of formal simplicity, and adopting also the simplifications discussed in Antunes

et al. (1999), we can deduce

ts þ trCrfORu � 1
2
rfO2R2: ð5Þ

Using classical perturbation analysis Eqs. (2) and (3) can be solved, for a given motion of the rotor, by separating the

displacement hðy; tÞ; the tangential flow velocity uðy; tÞ; and the pressure field pðy; tÞ; into a steady term, depending on

the rotor-average eccentricity, and a small fluctuating term, dependent on the rotor vibratory motion

hðy; tÞ ¼ h0ðyÞ þ h1ðy; tÞ; ð6Þ

uðy; tÞ ¼ u0ðyÞ þ u1ðy; tÞ; ð7Þ

pðy; tÞ ¼ p0ðyÞ þ p1ðy; tÞ: ð8Þ

Let us replace hðy; tÞ; uðy; tÞ and pðy; tÞ in Eqs. (2), (3) and (5), by Eqs. (6), (7) and (8). Then, neglecting higher-order

products of the fluctuating terms, two sets of differential equations are obtained: (i) zero-order nonlinear flow

equations, describing the steady flow field; (ii) first-order linearized equations, describing the fluctuating flow, which

apply to small vibratory motions about the static position. These are,
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Eqs. (9)–(12), deduced by the same procedures, can be found in Antunes et al. (1996).

In the following we will be interested, in particular, in the fluctuating form of the dynamic flow forces

FX ðtÞ
L

¼ �R

Z 2p

0

p1ðy; tÞ cos y dy;

FY ðtÞ
L

¼ �R
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0

p1ðy; tÞ sin y dy; ð13Þ

where L is the immersed length of the rotor. Equivalently, integration by parts of Eq. (13) lead to the more convenient

form
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3. Solution of the flow equations

3.1. Analysis of the steady flow

Let the static gap be approximated by

h0ðyÞEHð1� e cos yÞ; ð15Þ

where e ¼ X0=H is the reduced initial static eccentricity. Then, as in Antunes et al. (1996), from the zero-order flow

equations (9) and (10) one can obtain the following steady parameters, which will be needed later to describe the

fluctuating flow:

u0ðyÞ ¼ KOR
1

1� e cos y
ð16Þ

with K ¼ 1
2
ð1� e2Þ and finally,
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In the last equation,

A0 ¼ 1
2

K2; ð18Þ

A1 ¼ �1
2

K2; ð19Þ

A2 ¼ �Kf e
1

ð1� e2Þd
; ð20Þ

A3 ¼ Ke2f
1

ð1� e2Þd
¼ �A2e; ð21Þ

with d ¼ H
R
and

F
ij
k ðe; yÞ ¼

ðsin yÞiðcos yÞj

ð1� e cos yÞk
: ð22Þ

3.2. Analysis of the fluctuating flow

From the fluctuating gap

h1 ¼ �X cos y� Y sin y ð23Þ

and using Eqs. (15) and (16) one can solve Eq. (11) in order to obtain the fluctuating velocity field
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; ð24Þ

where CðtÞ is an integration ‘‘constant’’ related to the co-rotating flow.

Then h1ðy; tÞ and u1ðy; tÞ can be replaced in the momentum equation (12) from which the fluctuating pressure field can

be obtained.

Note that Eqs. (23)–(24) can be found as well in Antunes et al. (1996). However, due to a misprint, the fourth term of

Eq. (34) in Antunes et al. (1996) has a wrong sign, which was corrected here. Such misprint does not affect the

formulation following Eq. (34), in Antunes et al. (1996).

3.3. Resultant fluctuating fluid forces

Considering Eq. (10), and with the knowledge of Eqs. (15)–(17), (23) and, (24), one can deduce by integration,

fX �
FX ðtÞ

L
¼ �R

Z 2p

0

@p1ðy; tÞ
@y

sin y dy

¼MXX
.X þ CXX

’X þ CXY
’Y þKXX X þ KXY Y þKXCC; ð25Þ
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fY �
FY ðtÞ

L
¼ R

Z 2p

0

@p1ðy; tÞ
@y

cos y dy

¼MYY
.Y þ CYX

’X þ CYY
’Y þ CYC

’C þKYX X þ KYY Y þKYCC; ð26Þ

fC � R

Z 2p

0

@p1ðy; tÞ
@y

dy ¼ 0

¼MCY
.Y þ CCX

’X þ CCY
’Y þ CCC

’C þKCX X þ KCY Y þKCCC ð27Þ

¼ MCY
.Y þ CCX

’X þ CCY
’Y þ CCC

’C þ KCX X þKCCC: ð28Þ

Note that, because KCY � 0; one can obtain Eq. (28) from Eq. (27). Eqs. (25) and (26) represent the fluidelastic forces

per unit length and Eq. (28) express the continuity of the pressure field.

The inertial, velocity and displacement coupling factors are presented in Appendix A as a function of the integrals

G
ij
k ðeÞ ¼

Z 2p

0

ðsin yÞiðcos yÞj

ð1� e cos yÞk
dy; ð29Þ

which are tabled in Appendix B.

Observe that the dynamics of the system depends on X ðtÞ; Y ðtÞ and CðtÞ: This explains why we need three differential
equations (25), (26) and (28) to characterize fX and fY which are the focus of our interest. However, in two particular

cases (see, Antunes et al., 1996) it is possible to characterize fX and fY with only two equations: (i) dissipative linearized

motions of a centered rotor; (ii) linearized motions of an eccentric rotor for a frictionless flow. In these particular

situations one can eliminate references to the variable CðtÞ and its derivative in Eqs. (25) and (26). Indeed the

differential equation (28) simplifies for a centered rotor or for a frictionless flow, allowing an explicit solution for CðtÞ:

3.4. Physical meaning of CðtÞ

Integrating each side of the linearized form of the flow rate

QðtÞ ¼ h0ðyÞu0ðyÞ þ h1ðy; tÞu0ðyÞ þ h0ðyÞu1ðy; tÞ ð30Þ

in ½0; 2p	; one obtains

QðtÞ ¼ HKOR þ HCðtÞ;

that is,

uðtÞ ¼ C0 þ CðtÞ;

where uðtÞ ¼ QðtÞ=H is the average tangential flow velocity and C0 ¼ KOR is the correspondent zero order term.

Clearly, CðtÞ is the first-order fluctuating term of the average tangential flow velocity.

4. Analysis of the coupled system

4.1. Proposed formulation

Let f st
X and f st

Y be the structural dynamic forces per unit shaft length,

f st
X ¼ Mst .X þ Cst ’X þ KstX ; ð31Þ

f st
Y ¼ Mst .Y þ Cst ’Y þ KstY ; ð32Þ

where and Mst; Cst and Kst stand, respectively, for the rigid rotor mass, the damping coefficient and the stiffness of the

flexible isotropic rotor fixture. These coefficients are defined per unit length of the rotor. The study of the interaction

phenomena induced by the co-rotating flow can be made considering the following complete set of rotordynamic

equations:

0 ¼ fX þ f st
X ¼ ðMXX þ MstÞ .X þ ðCXX þ CstÞ ’X þ CXY

’Y þ ðKXX þ KstÞX þKXY Y þKXCC; ð33Þ

0 ¼ fY þ f st
Y ¼ ðMYY þ MstÞ .Y þ CYX

’X þ ðCYY þ CstÞ ’Y þ CYC
’C þKYX X þ ðKYY þ KstÞY þKYCC; ð34Þ
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0 ¼ MCY
.Y þ CCX

’X þ CCY
’Y þ CCC

’C þ KCX X þKCCC: ð35Þ

Letting Z ¼ ’X and W ¼ ’Y one can study the modal behavior of the system as a function of e and O; by solving the
complex eigenvalue ln ¼ sn þ inn and complex eigenvector fFng problem of the equivalent set of five first-order

differential equations:

1 0 0 0 0

0 1 0 0 0

CXX þ Cst CXY MXX þ Mst 0 0

CYX CYY þ Cst 0 MYY þ Mst CYC

CCX CCY 0 MCY CCC

2
6666664

3
7777775

’X

’Y

’Z

’W

’C

2
66666664

3
77777775
þ

0 0 �1 0 0

0 0 0 �1 0

KXX þ Kst KXY 0 0 KXC

KYX KYY þ Kst 0 0 KYC

KCX 0 0 0 KCC

2
6666664

3
7777775

X

Y

Z

W

C

2
6666664

3
7777775
¼

0

0

0

0

0

2
6666664

3
7777775
:

ð36Þ

From each eigenvalue ln ¼ sn þ inn the corresponding reduced modal frequency and reduced modal damping can be

computed as

$n ¼
nn

ost
;

dn ¼
�sn

ost
;

where ost is the structural circular frequency in vacuum.

Note that 0, 1 or 2 complex conjugate pairs of eigenvalues (and eigenvectors) would be expected in the complete set of

5 eigenvalues (and eigenvectors) of the problem. One of these eigenvalues must be always real. Note that the coupling

matrices depend on O and e but are otherwise constant.

4.2. Alternative formulation

Note that in the precedent analysis we deal with a new variable, CðtÞ: However, if one is only interested in an

eigenvalue analysis, by assuming a solution in the form

S ¼

*X

*Y

*C

2
64

3
75elt;

and replacing it in Eqs. (33), (34) and (35) one can deduce after eliminating *C

fl2MðlÞ þ lCðlÞ þKðlÞg
*X

*Y

" #
¼

0

0

" #
; ð37Þ

where

MðlÞ ¼
ðMXX þ MstÞ

MCYKXC

ðlCCC þKCCÞ
�CYCCCX

ðlCCC þKCCÞ
ðMYY þ MstÞ �

KYCMCY þ CYCCCY

ðlCCC þKCCÞ
� l

CYCMCY

ðlCCC þKCCÞ

2
664

3
775;

CðlÞ ¼
ðCXX þ CstÞ �

CCXKXC

ðlCCC þKCCÞ
CXY �

CCYKXC

ðlCCC þKCCÞ

CYX �
KYCCCX þ CYCKCX

ðlCCC þKCCÞ
ðCYY þ CstÞ �

KYCCCY

ðlCCC þKCCÞ

2
664

3
775;

KðlÞ ¼
ðKXX þ KstÞ �

KCXKXC

ðlCCC þKCCÞ
KXY

KYX �
KYCKCX

ðlCCC þKCCÞ
ðKYY þ KstÞ

2
664

3
775:

Observe that all the three matrices obtained,M; C and K; are now depend on the eigenvalues l: In other words, they
depend on the motion frequency and the eigenvalue problem becomes therefore nonlinear. Thus, to solve the new

generalized eigenvalue problem (37), and find the modal properties of the system, it is necessary to apply an iterative
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method for each and every eigenvalue. This type of formulation, which is often found in literature, is obviously

somewhat awkward.

As a matter of fact, if the flow is nondissipative (f ¼ 0), the matrices in Eq. (37) will simplify so that they do not

depend on l: In this case one can deduce

fl2N1 þ lN2 þN3g
*X

*Y

" #
¼

0

0

" #
; ð38Þ

where

N1 ¼
ðMst þMXX Þ 0

0 ðMst þMYY Þ �
CYCMCY

CCC

2
4

3
5

¼
Mst þ

prR2

d
2ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
Þ

e2
0

0 Mst þ
prR2

d
2ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
Þ

e2

2
6664

3
7775;

N2 ¼
Cst CXY �

MCYKXC

CCC

CYX �
CYCCCX

CCC

Cst

2
664

3
775

¼
Cst prR2

d
O

�
prR2

d
O Cst

2
664

3
775

and

N3 ¼
ðKst þKXX Þ �

CCXKXC

CCC

0

0 ðKst þKYY Þ

2
4

3
5

¼
Kst �

prR2

d
O2

4

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� e2Þ

p 0

0 Kst �
prR2

d
O2

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� e2Þ

p

2
6664

3
7775:

Note that the coupling coefficients related to the fluctuating fluid forces, in matrices N1; N2 and N3; are precisely the
same obtained by Antunes et al. (1996) when describing the formulation of the fluid forces as a function of the

eccentricity e; if dissipative effects are neglected.
The dependence of the coupling matrices on the motion frequency can be interpreted as a time-delay in the flow

response to the rotor vibrations. To show that the flow response of the dissipative system is delayed with respect to

rotor motions we will briefly study the simpler planar case. Letting Y ¼ ’Y ¼ .Y ¼ 0; Eq. (35) collapse into the

differential equation

CCX
’X þ CCC

’C þKCX X þKCCC ¼ 0 ð39Þ

which relates the flow response and the rotor motion. That is,

CðtÞ ¼ �e�ðKCC=CCC Þt
Z

eðKCC=CCC Þt CCX
’X þKCX X

CCC

� �
dt: ð40Þ

Assuming harmonic rotor motions

X ðtÞ ¼ *Xelt; ð41Þ

where l is a complex number, we obtain

CðtÞ ¼ �
KCX þ lCCX

KCC þ lCCC

*Xelt: ð42Þ
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So, one can identify a phase delay fðlÞ between (41) and (42) which can be computed as

fðlÞ ¼ arg
CðtÞ
X ðtÞ

� �

or

fðlÞ ¼ arg �
KCX þ lCCX

KCC þ lCCC

� �
:

Observe that if f ¼ 0; then KCX ¼ KCC ¼ 0 and

f ¼ arg �
CCX

CCC

� �
� 0;

that is, the response delay of a nondissipative bulk-flow is zero.

One can additionally note that if e ¼ 0 then CCX ¼ KCX ¼ 0: This case yields also a zero delay between the flow

response and the rotor motion, for both dissipative and nondissipative flows:

f ¼ arg �
0

KCC þ lCCC

� �
� 0:

Similar time-delay effects were noted by Porcher (1994), when addressing structures subjected to confined axial flows.

In fact this kind of effect is also common in the field of viscous flow over compliant boundaries (see, for instance,

Carpenter and Garrad, 1986).

5. Numerical computations

As mentioned before concerning the eigenvalue analysis of system (36), it is expectable to find 0; 1 or 2 complex

conjugate pairs of eigenvalues (and eigenvectors) for this problem. This means that 5; 3 or 1; of the complete set of 5
eigenvalues, will be real, respectively. Therefore, numerical results presented here do account for this fact.

Observe that each conjugate pair of complex eigenvalues/eigenvectors corresponds to an oscillatory mode. The

remaining real eigenvalues/eigenvectors are associated with nonoscillatory motions. The system modes can be

represented by the corresponding frequency (imaginary part of the eigenvalue) and damping (real part of the same

eigenvalue) values, which depend on the spinning velocity and rotor eccentricity. From the computed eigenvectors,

oscillatory modes can be additionally characterized by a well-defined forward or backward whirl. The computed modes

will be identified in the plots using the following codes: F and B, respectively, for the forward and backward whirling

modes and Z for zero-frequency modes.

The reduced modal frequencies $n ¼ nn=ost will be shown as a function of the reduced rotor velocity O ¼ O=ost; as
well the corresponding damping coefficient dn ¼ �sn=ost:
In order to be able to compare the present results with previous work, (Antunes et al. 1996) we have assumed a mass

ratio g ¼ Ma=Mst ¼ 2; a reduced gap of d ¼ H=R ¼ 0:1 and we have neglected all dissipative structural effects in almost
all numerical simulations. The only exception concerns the last computations, presented in paragraph.

5.1. Simple cases accounted for by the previous theory

In Figs. 2–5 we present some particular cases which have in common the fact they concern dissipative linearized

motions of a centered rotor or linearized motions of an eccentric rotor for a frictionless flow. That is, cases which are

properly accounted for by the previous linear theory developed by Antunes et al. (1996).

The numerical results presented in Figs. 2–5 display the same forward and backward whirling modes represented in

Figs. 11, 12 and 13 of Antunes et al. (1996). Of course, one additional stable eigenvalue (at zero frequency) stems for the

present theory, but all other aspects are identical to previous results.

5.2. The dissipative-eccentric case

In Figs. 6–8 the general case of a dissipative linearized motion of an eccentric rotor is considered, as a function of the

fluid friction parameter f : As it was stressed before, in these computations we have neglected all dissipative structural

(nonrotating) effects. However we note that those effects, in our configuration, simply defer the stability boundary as it

is common for such systems (see, for instance, Kr.amer, 1993 or Genta, 1995).
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Fig. 2. Rotor modes as a function of the reduced spinning velocity O (rotor eccentricity e ¼ 0; fluid friction neglected; mass ratio

g ¼ 2).
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Fig. 3. Rotor modes as a function of the reduced spinning velocity O (rotor eccentricity e ¼ 0:7; fluid friction neglected; mass ratio

g ¼ 2).
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Fig. 4. Rotor modes as a function of the reduced spinning velocity O (rotor eccentricity e ¼ 0; fluid friction f ¼ 0:005; mass ratio
g ¼ 2).
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Fig. 5. Rotor modes as a function of the reduced spinning velocity O (rotor eccentricity e ¼ 0; fluid friction f ¼ 0:01;mass ratio g ¼ 2).
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Fig. 6. Rotor modes as a function of the reduced spinning velocity O (rotor eccentricity e ¼ 0:7; fluid friction f ¼ 0:0025; mass ratio
g ¼ 2) (Present formulation).
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Fig. 7. Rotor modes as a function of the reduced spinning velocity O (rotor eccentricity e ¼ 0:7; fluid friction f ¼ 0:005; mass ratio
g ¼ 2) (Present formulation).
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Fig. 8. Rotor modes as a function of the reduced spinning velocity O (rotor eccentricity e ¼ 0:7; fluid friction f ¼ 0:01; mass ratio
g ¼ 2) (Present formulation).
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Fig. 9. Rotor modes as a function of the reduced spinning velocity O (rotor eccentricity e ¼ 0:7; fluid friction f ¼ 0:005; mass ratio
g ¼ 2) (Numerical results computed as in Antunes et al., 1996).
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The numerical results using the present exact formulation can be quite different from the corresponding results

computed as in Antunes et al. (1996). This fact is illustrated, for instance, by comparing Figs. 7 (present formulation)

and 9 (computed using the former approach by Antunes et al., 1996). The straightforward but crude approach adopted

at that time, for the dynamic analysis of the general case, was simply to combine the conservative coupling terms,

stemming from frictionless analysis of the eccentric system, with the dissipative terms stemming from a centered

configuration.

Comparing Figs. 7 (present formulation) and 9 (former approach) one can notice that:

* The pattern of modal frequencies on; as a function of the spinning velocity O; is qualitatively similar but displays

significant quantitative differences (in particular in the lower values of on).
* More important, the relatively simple pattern of the modal damping dn predicted by the crude model has been

replaced by a more complex pattern where all the eigenvalues are interlaced.
* The range of O where divergence instability was predicted is now much smaller. In practice, for the present test case,

the system loses stability by flutter of the backward whirling mode, instead of the divergence predicted earlier.

Observing the reduced modal damping curves displayed in Figs. 6–8, one can notice that, as the internal (rotating,

flow-related) damping increases, the stability boundaries are deferred. That is, internal damping is stabilizing for the

rotor-flow configuration addressed in this paper. Interestingly we also observed this behavior for other values of

Ma=Mst and d:
The matrix representation of the dissipation effects of our centered isotropic rotor can be modelled as follows:

F
dissipative
X

F
dissipative
Y

" #
¼ �

CE þ cIO 0

0 CE þ cIO

" #
’X

’Y

" #
�

0 cI
O2

2

�cI

O2

2
0

2
664

3
775 X

Y

" #
;

where CE and cIO stand, respectively, for the external and internal damping. Note that CE and the factor cI are

independent of the spinning velocity O: An analysis of this system leads to the conclusion that internal damping is

associated to dissipative and circulatory terms in the corresponding matrices, and so can exhibit stabilizing as well as

destabilizing effects, depending on the spinning velocity O: This situation is not very different from the one obtained

when formulating the dynamics of the Jeffcott rotor with internal damping, for which rotating damping is stabilizing

below the critical velocity and induces instability effects in the supercritical range (see, for instance, Genta, 1995 or

Ginsberg, 2001). However, for such basic problem, the dependence of the coupling coefficients on O is different from

ours. For moderate d—our case—the rotordynamic model has one additional coupled equation (33) related with the co-

rotating flow—C ¼ CðtÞ: This fact leads to a more complex behavior as far as modal damping is concerned and deserves
a deeper analysis.

In Moreira et al. (2000a) this improved linear model was applied using Grunenwald et al. (1996) experimental

parameters for two different geometries and significant eccentricities, showing that the present improved formulation

leads to better predictions. In Moreira et al. (2000b), extensive experimental work has been produced, where the present

improved linear model was experimentally validated using a new rotor geometry and several eccentricities. These results

stress the relevance of the analytical approach presented here.

5.3. Using the actual rotor eccentricity

Numerical computations shown in this section are based on experiments (using water) performed by Grunenwald

et al. (1996) and on corresponding numerical simulations using a fully nonlinear model (Moreira et al., 2000a). In such

experiments and nonlinear simulations the test case was labelled ‘‘eccentric configuration B’’. The significant parameters

used will be repeated here for completeness in Table 1.

As stated before dissipative structural effects will now be also considered in the computations. The modal frequency

and damping values will be presented in a nonreduced form.

System dynamics are strongly dependent on the rotor eccentricity. Indeed, a significant drift can be observed as a

function of the spinning velocity—see Grunenwald et al. (1996)—which is mostly due to a Bernoulli effect. Moreover,

the linearized equations which describe the fluctuating flow only apply to small vibratory motions about the static

position of the rotor. These facts motivate the use of the actual rotor eccentricity (or, at least, an estimate of it) for the

eigenvalue analysis.

In Fig. 10 one can see the computed eigenvalues when using the same static rotor eccentricity (defined at O ¼ 0) for

every spinning velocity. Fig. 11 shows the corresponding results if the actual rotor eccentricity as a function of O (e.g.,

accounting for the rotor drift) is used when computing the flow-coupling coefficients. In practice, the actual rotor
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eccentricity were extracted from nonlinear dynamical simulations at several spinning velocities, as shown in Fig. 12

(Moreira et al., 2000a). Then interpolated values were used for the modal computations, as a function of O; by fitting a
spline to the regularly spaced numerical values.

The differences exhibited by the eigenvalues in Figs. 10 and 11 justify the later approach. An estimate of the rotor

drift, as a function of the spinning velocity may be also obtained by an iterative solution of the zero order (static) flow-

structure equations (see Antunes et al., 1996).

6. Conclusions

An improved linear model for rotors subjected to dissipative annular flows, based on classical perturbation analysis,

was developed in this paper.
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Fig. 10. Rotor modes as a function of the spinning velocity, using the same static eccentricity at every spinning velocity (e ¼ 0:6;
‘‘eccentric configuration B’’ in Grunenwald et al., 1996; Moreira et al., 2000a).

Table 1

Parameters of simulations to test the influence of the drift

Eccentric configuration B

L (rotor length (m)) 0:250
R (rotor radius (m)) 0:0435
H (average annular gap (m)) 0:0067
d ¼ H

R
(reduced gap) 0:154

e (reduced initial static eccentricity) 0:6
Mst (structural mass (kg)) 7:0
Cst (structural damping (Ns/m)) 35

Kst (structural stiffness (N/m)) 1:6� 104

f st (structural frequency: 1
2p

ffiffiffiffiffiffi
Kst
Mst

q
(Hz)) 7:6
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Besides the natural response variables X ðtÞ and Y ðtÞ of the problem, a new flow variable CðtÞ—which can be

physically interpreted as the fluctuating term of the average tangential flow velocity—was introduced, yielding an

additional eigenvalue in the linear analysis. Whenever boundary pressure values are controlled by dissipative effects, it

becomes quite interesting to use this additional flow variable.

We stress that the proposed methodology to avoid frequency-dependent flow-coupling matrices—e.g., using one

auxiliary variable and an additional first-order differential equation—can be applied, as well, to different systems. In
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Fig. 11. Rotor modes as a function of the spinning velocity, using the actual eccentricity (‘‘eccentric configuration B’’ in Grunenwald

et al., 1996; Moreira et al., 2000a).
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Fig. 12. Rotor drift as a function of the spinning velocity (‘‘eccentric configuration B’’ in Moreira et al., 2000a).
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vibrating structures subjected to axial flow, our approach was also recently applied with rather satisfactory results

(Antunes and Piteau, 2001). In Porcher (2000), Kaneko et al. (2000) and Inada and Hayama (2000) one can find some

interesting problems (characterized by axial or leakage flows) for which the usage of this approach might also be

beneficial.

The present model is an extension of the theory developed by Antunes et al. (1996). It shows identical predictions in

two specific cases, which are exactly accounted for by the previous model, namely: (i) dissipative linearized motions of a

centered rotor; (ii) motions of an eccentric rotor for frictionless flow. However, the new approach also yields exact

results for the general case of dissipative motions of eccentric rotors.

Use of the new variable introduced CðtÞ; coupled with X ðtÞ and Y ðtÞ; uncovers a richer modal behavior which

incorporates any delay effects of the flow responses to the rotor motions.

As a final note, let us stress that the validity of this (or any other) model is dependent on an adequate estimation of

the rotor eccentricity, because system dynamics are strongly dependent on the actual value of this parameter.
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Appendix A. Linear equation factors

A list is given below. In the following equations K ¼ 1
2
ð1� e2Þ

MXX ¼
rR2

d
G20
1 ; ðA:1Þ

CXX ¼
rR2

d
fO
d

G20
2 ; ðA:2Þ

CXY ¼
rR2

d
2KOG20

3 ; ðA:3Þ

KXX ¼
rR2

d
ðKOÞ2ðG20

3 � 2G20
4 � eG21

4 Þ; ðA:4Þ

KXY ¼
rR2

d
f

KO2

d
�

e2

ð1� e2Þ
ðG20

4 þ G22
4 Þ þ

eð1þ e2Þ
ð1� e2Þ

G21
4 þ G20

3

� �
; ðA:5Þ

KXC ¼ �2rKOR2eG20
3 ; ðA:6Þ

MYY ¼
rR2

d
G02
1 ; ðA:7Þ

CYY ¼
rR2

d
f
O
d

G02
2 ; ðA:8Þ

CYX ¼
rR2

d
2KOð�G02

3 þ eG01
3 Þ; ðA:9Þ

CYC ¼ �rR2G01
1 ; ðA:10Þ

KYX ¼
rR2

d
f

KO2

d
e2

ð1� e2Þ
ðG02

4 þ G04
4 Þ �

eð1þ e2Þ
ð1� e2Þ

G03
4 � G02

3

� �
; ðA:11Þ

KYY ¼
rR2

d
ðKOÞ2ðG02

3 � eG21
4 � 2G02

4 � 2eG03
4 þ 4eG01

4 Þ; ðA:12Þ

KYC ¼ �
rR2

d
fOG01

2 ; ðA:13Þ
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MCY ¼
rR2

d
G01
1 ; ðA:14Þ

CCC ¼ �R2rG00
1 ; ðA:15Þ

CCX ¼
rR2

d
2KOð�G01

3 þ eG00
3 Þ; ðA:16Þ

CCY ¼
rR2

d
f
O
d

G01
2 ; ðA:17Þ

KCX ¼
rR2

d
fKO2 e2

ð1� e2Þd
ðG01

4 þ G03
4 Þ

�

�
eð1þ e2Þ
ð1� e2Þd

G02
4 �

1

d
G01
3

�
; ðA:18Þ

KCC ¼ �
rR2

d
fOG00

2 : ðA:19Þ

Appendix B. Azimuthal integrals

The azimuthal integrals in Appendix A are given as follows:

G00
1 ¼

2pffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p ; ðB:1Þ

G01
1 ¼

2p 1�
ffiffiffiffiffiffiffiffi
1�e2

p� �
e

ffiffiffiffiffiffiffiffi
1�e2

p if 0oeo1;

0 if e ¼ 0;

8>><
>>: ðB:2Þ

G02
1 ¼

2pð1�
ffiffiffiffiffiffiffiffi
1�e2

p
Þ

e2
ffiffiffiffiffiffiffiffi
1�e2

p if 0oeo1;

p if e ¼ 0;

8><
>: ðB:3Þ

G20
1 ¼

2pð1�
ffiffiffiffiffiffiffiffi
1�e2

p
Þ

e2 if 0oeo1;

p if e ¼ 0;

8<
: ðB:4Þ

G00
2 ¼

2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� e2Þ3

q ; ðB:5Þ

G01
2 ¼

2peffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� e2Þ3

q ; ðB:6Þ

G02
2 ¼

2pð2e2�1þ
ffiffiffiffiffiffiffiffiffiffiffi
ð1�e2Þ3

p
Þ

e2
ffiffiffiffiffiffiffiffiffiffiffi
ð1�e2Þ3

p if 0oeo1;

p if e ¼ 0;

8><
>: ðB:7Þ

G20
2 ¼

2pð1�
ffiffiffiffiffiffiffiffi
1�e2

p
Þ

e2
ffiffiffiffiffiffiffiffi
1�e2

p if 0oeo1;

p if e ¼ 0;

8><
>: ðB:8Þ
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G00
3 ¼

pðe2þ2Þffiffiffiffiffiffiffiffiffiffiffi
ð1�e2Þ5

p if 0oeo1;

2p if e ¼ 0;

8<
: ðB:9Þ

G01
3 ¼

3peffiffiffiffiffiffiffiffiffiffiffi
ð1�e2Þ5
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G20
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p if 0oeo1;

p if e ¼ 0;

8<
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G01
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peðe2þ4Þffiffiffiffiffiffiffiffiffiffiffi
ð1�e2Þ7
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8<
: ðB:13Þ

G02
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pð2e2þ3Þeffiffiffiffiffiffiffiffiffiffiffi
ð1�e2Þ7

p if 0oeo1;

0 if e ¼ 0;

8<
: ðB:15Þ

G04
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p
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if 0oeo1;
1
4
p if e ¼ 0:

8>>><
>>>:

ðB:19Þ

Appendix C. Nomenclature

CðtÞ integration ‘‘constant’’

Cst structural damping per unit length

dn reduced modal damping dn ¼ �sn=ost

f ; fr; fs flow/wall friction coefficients

f st structural frequency in vacuo

fX ; fY ; fC nonlinear fluidelastic forces per unit length

f st
X ; f st

Y structural forces per unit length
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hðy; tÞ local gap

h0; h1 steady and fluctuating local gap

H average annular gap

Kst structural stiffness per unit length

L rotor length

Ma added mass of the fluid per unit length,

Ma ¼ prR2=d
Mst modal mass of the rotor per unit length in vacuo

pðy; tÞ gap averaged pressure

p0; p1 steady and fluctuating gap averaged pressure

R rotor radius

QðtÞ flow rate

t time

uðy; tÞ tangential flow velocity

u0; u1 steady and fluctuating tangential flow velocity

X ðtÞ;Y ðtÞ rotor motion
X0;Y0 steady rotor position

g mass ratio, g ¼ Ma=Mst

d reduced gap: H=R

e reduced initial static eccentricity, e ¼ X0=H

ln eigenvalue of the flow-structure system

y azimuthal angle

nn imaginary part of the eigenvalue ln

r fluid density

sn real part of the eigenvalue ln

tr; ts shear stresses at the rotor and stator walls

on circular frequency

$n reduced modal frequency, $n ¼ nn=ost

ost structural circular frequency in vacuo

f delay

O spinning velocity

O reduced rotor velocity O ¼ O=ost
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